发布时间:2018-08-20 10:18:51 产业智能官
近年来“自动驾驶”被人们广泛提及,大量汽车行业主体、互联网领域公司、精英创业人群以及资本纷纷投入到该领域的探索中来,自动驾驶技术是什么?离我们还有多远?颠覆性的行业变革是否已经到来?本文中我们将谈谈我们对于自动驾驶的感知和观点。
自动驾驶近些年来得到了社会的广泛关注,大量的汽车行业主体、互联网领域公司、精英创业人群以及资本纷纷投入到该领域的探索中来。自动驾驶按照美国汽车工程师协会(SAE)根据系统和人对于车辆的控制程度可以分为L0~L5六个等级。
其中在L0~L3级的系统主要还是起到对驾驶员的辅助作用,即使是L3级系统已经可以在极大程度上将驾驶员从驾驶任务中解放出来,但仍然需要驾驶员对车辆行为做最终的把控,即一旦出现系统无法处置的情况,驾驶员必须在第一时间接手控制。而当系统达到L4级时,系统已经可以在特定环境下完全摆脱驾驶员并自主的负责车辆的操作作业。L1~L3级领域的玩家主要是汽车整车厂商(OEMs)和汽车产业链一级供应商(Tier1s),而L5级自动驾驶目前离到我们的身边还尚有一段路要走,因此,本文我们将主要讨论L4级自动驾驶技术及其可能带来的商业机会。
L4级自动驾驶系统硬件成本短期内可以达到商业化应用水平
实现L4级自动驾驶技术的硬件主要包括传感器和计算单元。目前各家主要使用的传感器单元主要包括了:摄像头、毫米波雷达、激光雷达、超声波雷达、GNNS/IMU。
其中,激光雷达在测量精度方面有独到的优势,能够发射激光线束越多得到的测量结果越精准,但同时也意味着设备成本越高昂,如:Velodyne 64线激光雷达造价超过7万美元,过于昂贵,而且设备的体积、结构复杂程度都不适宜商业化应用。当前,摄像头和毫米波雷达上的技术进步显著,尤其是摄像头,即使是在强光或光线极差的环境中,亦或是光线突然发生变化的情况下(对方车道的远光灯、车辆进出隧道)也可以得到很好的成像效果,而且目前车载摄像头的有效工作距离已经可以达到500米甚至更远,相比之下车载激光雷达探测距离一般不超过200米。
但这并不意味着激光雷达就是多余的产品,目前即使是多家主打以视觉传感为主要探测方式的自动驾驶公司(提供L4方案)也同样会在其测试车辆上加装激光雷达,或者将激光雷达作为其备选方案,主要是因为激光雷达在提供数据冗余以及实现车辆定位上(SLAM)有着重要的作用,但我们认为考虑到任务的重要程度和车辆的工作场景等问题,也许商用化L4级自动驾驶系统中并不需要昂贵的64线机械旋转式激光雷达产品。
目前实现L4级自动驾驶的整体硬件成本还比较高,主要原因包括:大量的专业设备尚处于测试阶段并未实现量产而导致设备单价昂贵,以及尚处于测试阶段的各方为确保自动驾驶车辆行驶的绝对安全往往会在测试车辆上加装大量的传感器来确保充足的数据冗余。预计未来1~2年随着自动驾驶车辆开始出现在一些特定的应用场景,系统成本可以逐渐控制在10~20万元左右,而在更远的未来,当自动驾驶技术成熟到可以出现在更多的应用领域时,系统硬件成本将会进一步下降。
L4级自动驾驶技术将于商用车擦除第一朵商业化应用的火花
我们认为L4级自动驾驶技术会率先在商用车领域尤其是道路运输行业率先实现商业化应用,主要原因有以下几点:
1、现有的自动驾驶技术还难以应对所有的道路环境和多样的驾驶任务,这就意味着环境越简单,需要考虑的道路上的变量越少,越容易实现技术应用。对比乘用车的应用环境,商业运输任务一般比较单一,往往是重复单一线路的点到点的运输作业,而且大部分的行驶环境是在高速公路或者封闭园区内,行驶环境中需要考量的变量较少,技术实现难度相对较低。
2、即使按照我们所期盼的1~2年系统成本可以下降至10~20万元,但这对于乘用车的消费人群来说还是太过于昂贵,但对于商业运输行业中的车队运营商来说20万元/台车的硬件投入是小于每台车/年的人力支出(假设:每台车需要2~3名司机,每名司机年薪在12万元);
3、除了节省人力成本以外,自动驾驶系统还可以提高运行效率,这包括了:
1)由于自动驾驶系统并不会疲劳,因此自动驾驶系统可以有效延长每日车辆的运营时间;
2)资料显示驾车习惯良好的司机可以节省13.3%的油料,由于自动驾驶技术比驾驶员拥有更好的环境感知能力以及对于单一任务的重复优化能力,预计系统也可以实现相同的省油效果;
3)此外,自动驾驶系统将会显著降低车祸发生概率,这将会降低保险费用或者因事故而导致的额外费用支出。
4、国内卡车有600万台左右,公路运输量占整体物流总量的78%,技术替代可以实现较大的商业价值,此外商用卡车的平均使用年限在5~6年,远远低于乘用车平均使用年限,因此实现技术替代的速度也会比较快。
L4自动驾驶将从“封闭园区”到“开放道路”
封闭园区,如港口集装箱运输,矿山、砂石厂等。预计第一个成熟的L4商业化应用项目落地将会出现在封闭园区场景中,主要原因有:
1)封闭园区道路环境简单,基本不存在除自动驾驶车辆以外的其他运动物体,也不存在通用的交通标识或其他复杂的道路环境,技术实现难度相对较低;
2)封闭园区实现自动驾驶受到的政策影响较小,主要是因为在封闭园区内运行自动驾驶系统涉及公共交通安全问题少,而且封闭园区内的高精地图数据采集也不受到国家对于数字地图采集资质的限制;
3)相比起同样适用于固定区域内的AGV(Automated Guided Vehicle)自动化解决方案,自动驾驶系统更加灵活,且成本远远低于AGV系统,主要原因在于自动驾驶车辆通常会基于成熟的车辆平台改装而成,而且自动驾驶技术的实现主要是通过车载传感器和预先载入的高精度地图实现的,基本不需要对港区基建设施进行改造。而AGV系统,举例来说:青岛港AGV改造,整套改造方案70亿元,其中单台AGV的费用就达到500万元,而且由于需要在港口打入大量的导航钢钉,因此该套方案并不是和老港改造;而目前能够适用于港口环境的L4自动驾驶卡车的改造费用基本不超过50万元,且基本不需要任何的额外投入。
高速公路运输,高速公路运输的实现可能需要更长的时间,主要原因有:
1)预计政策上对于高速公路上的自动驾驶商业化运营的放行难度较高,因为高速公路涉及的行驶主体多,因此只有在经过大量的道路测试并证明自动驾驶车辆可以在高速公路环境实现绝对安全的行驶时政策上才有可能放行;此外,道路运输行业管理涉及到多个政府部门,政策推行难度较大;
2)政策对于开放环境的地图数据采集有较严格的资质限制,因此目前自动驾驶厂商获取高速地图数据的渠道和模式尚不明确;
3)国内高速运输行业标准化程度不高,行业小、散、杂的特点突出,而且甩挂率低(5%左右),卡车主需要大量时间去等到装满货物后才能上路,卡车在道路上的有效运营时间并不长,因此即使采取自动驾驶,也很难发挥该项技术在运营效率方面的优势,因此自动驾驶技术最好是率先应用于甩挂率高的细分领域,如港口周边的辐射区域,而随着甩挂率进一步提升,自动驾驶技术才有可能进一步对道路运输行业进行渗透。
中国与欧美发达国家相比物流费用偏高但效率偏低
L4级应用案例有望出现,L5仍需长期观望
综上所述,我们预计在1~2年内我们将能够看到L4级自动驾驶车辆商业化应用案例的出现,但首先会是在相对简单的封闭园区环境实现落地,比如港口、机场、工业园区、矿山等,而在高速公路场景的商业化应用案例预计首先会在国外出现,国内出现的时间还要看配套政策的制定速度以及道路运输行业标准化发展进程。
而预计我们还需要等待相当长的时间才能够看到L4级乘用车商业化应用或者L5级自动驾驶技术的落地,这需要去克服诸多的困难,包括算法、数据、自动驾驶系统可靠度以及政策等多方面因素,预计5年内很难看到成熟的产品出现,但未来随着技术的进步以及相关政策、配套设施的成熟,完全的无人驾驶车辆将会落地,而这将会给相关行业和社会带来巨大的变革,我们对此拭目以待!
相关阅读
每日 推荐
- 工信部:截至今年11月,已举办近700场中小企业撮合对接会
- 海关总署:将持续深化跨境电商综合改革,助力跨境电商高质量发展
- 前三季度我国冷链物流总额6.4万亿元 同比增长4.2%
- 福佑卡车启动第三期“叁餐计划”,为公路货运注入善行力量
- 今年西部陆海新通道班列运输货物突破80万标箱
- 铁路首运锂电池,物流迎来新篇章
- 湖北出台18条措施加快数字人才培育
- 中国航运业加快培育新质生产力 以高质量发展服务全球供应链稳定畅通
- 豪华重卡新王者!欧曼银河7驾驶舱再升级 科技智能与舒适安全完美融合
- 跨境运输新征程 | 中国潍坊——俄罗斯莫斯科TIR国际公路运输线路发车仪式圆满落幕
- 十城入选首批“5G+工业互联网”融合应用试点城市